Homoclinic Intersections and Indecomposability
نویسندگان
چکیده
منابع مشابه
Homoclinic Intersections and Mel'nikov Method for Perturbed sine -Gordon Equation
We describe and characterize rigorously the homoclinic structure of the perturbed sine{ Gordon equation under periodic boundary conditions. The existence of invariant manifolds for a perturbed sine{Gordon equation is established. Mel'nikov method, together with geometric analysis are used to assess the persistence of the homoclinic orbits under bounded and time-periodic perturbations.
متن کاملPeriodicity and Indecomposability
In this paper we characterize the existence of periodic points of odd period greater than one for unimodal mappings of an interval onto itself. The interesting juxtaposition of this condition with the occurrence in inverse limits of the well-known Brouwer-Janiszewski-Knaster continuum is explored. Also obtained is a characterization of indecomposability of certain inverse limits using a single ...
متن کاملIndecomposability Graphs of Rings
We define a subgraph of the zero divisor graph of a ring, associated to the ring idempotents. We study its properties and prove that for large classes of rings the connectedness of the graph is equivalent to the indecomposability of the ring and in those cases we also calculate the graph’s diameter. 2000 Mathematics subject classification: 16U99, 05C99.
متن کاملOn indecomposability and composants of chaotic continua
A homeomorphism f : X → X of a compactum X with metric d is expansive if there is c > 0 such that if x, y ∈ X and x 6= y, then there is an integer n ∈ Z such that d(fn(x), fn(y)) > c. A homeomorphism f : X → X is continuum-wise expansive if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer n ∈ Z such that diam fn(A) > c. Clearly, every expansive homeom...
متن کاملStudy of the double mathematical pendulum: II. Investigation of exponentially small homoclinic intersections
We consider the double mathematical pendulum in the limit when the ratio of pendulum masses is close to zero and the ratio of pendulum lengths is close to infinity. We found that the limit system has a hyperbolic periodic trajectory, whose invariant manifolds intersect transversally and the intersections are exponentially small. In this case we obtain an asymptotic formula of the homoclinic inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1987
ISSN: 0002-9939
DOI: 10.2307/2046405